產(chǎn)品分類
  • 上海自動化儀表一廠
    壓力變送器
    差壓變送器
    微差壓變送器
    精小型壓力變送器
    擴散硅壓力變送器
    單法蘭壓力變送器
    雙法蘭液位變送器
    節(jié)流裝置
  • 上海自動化儀表三廠
    熱電偶
    熱電阻
    端面熱電阻
    耐磨耐腐熱電偶
    電廠電站熱電偶
    耐磨耐腐熱電阻
    雙金屬溫度計
    一體化溫度變送器
    非接觸式溫度儀表
    儀表套管
    防爆熱電阻
    防爆熱電偶
    裝配式熱電偶
    法蘭式電熱偶
    鎧裝熱電阻
  • 上海自動化儀表四廠
    普通壓力表
    不銹鋼壓力表
    電接點壓力表
    特種壓力表
    雙針雙管壓力表
    精密壓力表
    隔膜壓力表
    膜片壓力表
    壓力表校驗器
    活塞壓力計
    數(shù)字壓力表
    電感壓力變送器
  • 上海自動化儀表五廠
    翻板液位計
    物位計
    浮筒液位送器
    液位控制器
    壓力表
    張力計
  • 上海自動化儀表六廠
  • 上海自動化儀表七廠
    閘閥
    截止閥
    止回閥
    球閥
    蝶閥
    安全閥
    調節(jié)閥
    電動閥門
    氣動閥門
    電磁閥
    旋塞閥
    減壓閥
    疏水閥
    水力控制閥
    針型閥
    襯氟閥門
    襯膠閥門
    銅閥門
    真空閥門
    排泥閥,排污閥
    排氣閥
    過濾器
    氨用低溫閥門
    氧氣閥門
  • 上海自動化儀表九廠
    電磁流量計
    渦街流量計
    渦輪流量計
    金屬管浮子流量計
    刮板流量計
    流量計附件
    腰輪流量計
  • 上海自動化儀表十一廠
    電動執(zhí)行機構
    執(zhí)行機構配件
    雙波紋管差壓計
  • 上海大華儀表廠
    XMT數(shù)顯調節(jié)儀
    中圓圖平衡記錄儀
    大圓圖自動平衡記錄儀
    XWF中長圖記錄儀
    EL小長圖記錄儀
    EH中長圖記錄儀
    記錄儀配件
    無紙記錄儀
    熱量顯示儀
  • 上海遠東儀表廠
    壓力控制器
    差壓控制器
    高壓控制器
    流量控制器
    微壓/微差壓控制器
    溫度控制器
    浮球液位控制器
  • 上海轉速表廠
    標準轉速發(fā)生裝置
    轉速傳感器
    轉速表
    轉速數(shù)字顯示儀
    轉速記錄儀
    接近開關
    轉換器
    轉速變送器
    手持式離心轉速表
    手持式離心轉速表
  • 上海自動化儀表有限公司
    調節(jié)控制器
    壓力變送器
    智能數(shù)顯儀
    蝶閥
    孔板流量計
  • 電感壓力變送器
  • 單/雙法蘭差壓(液位)變送器
新聞詳情

傳統(tǒng)差壓變送器在液氨球罐液位測量中的局限性及改造

來源:上海自動化儀表作者:上海自動化儀表網(wǎng)址:http://www.soleader.cn

分析探討了傳統(tǒng)差壓變送器在液氨球罐液位測量中的局限性,介紹了3051S ERS電子遠傳數(shù)字差壓液位系統(tǒng)的技術特點。對傳統(tǒng)的差壓變送器采用ERS系統(tǒng)改造后,徹底解決了傳統(tǒng)差壓變送器氣相管積液的問題。


   云南云天化股份有限公司紅磷分公司的氨站主要由2只容積為400 m 、內徑為 9 200 mm的球罐(1 和2 )和2只容積為1 000 m 、內徑為12 300 mm(3 和4 )的球罐及附屬設施組成,采用常溫壓力存貯方式貯存液氨。液氨球罐液位要求控制在15% ~75% ,超出此范圍則發(fā)出相應的報警信號,因此,液位的準確測量是其安全運行的關鍵。


1、問題的提出及成因

   2011年7月30日中班,4 液氨球罐液位指示偏差大,經(jīng)查為差壓變送器氣相管積液氨(正常測量時是氣氨),使液位指示值比實際液位低很多。排盡氣相管內的積液后,液位指示恢復正常,但很快又出現(xiàn)積液現(xiàn)象,隨后其他3只球罐也相繼出現(xiàn)同樣的問題。為保證球罐液位的準確測量,每隔30 min左右就需對氣相管進行排液。在液氨球罐差壓變送器氣相管出現(xiàn)積液的時段內,80 kt/a合成氨裝置停車檢修,且預留卸氨的冰機(1259 kW)出現(xiàn)故障,紅磷分公司外購的液氨只能用氨站2臺冰機(47.2 kW)進行卸氨。由于冰機制冷能力不足,卸入球罐的液氨攜帶的冷量不夠,球罐內的液氨處于亞臨界狀態(tài),差壓變送器氣相管內的氣氨在多種因素作用下轉換為液氨,而液氨卻難以轉化為氣氨,從而產(chǎn)生積液,此過程持續(xù)了近15 d。


  2014年8月,合成氨裝置停車。8月8日中班,1 球罐處于卸氨過程中,3 和4 球罐液氨存量保底,2 球罐向磷銨分廠270 kt/a和180 kt/a磷酸二銨(DAP)裝置及300 kt/a復混肥(NPK)裝置供應液氨。17:15左右,2 球罐液位由31% 逐步下降;17:40,差壓變送器液位指示為零,磁性翻板液位計反復上下亂指示,操作人員無法判斷2球罐內的液位情況,DAP裝置和NPK裝置作緊急停車處理;從18:40開始,每隔15 min對差壓變送器氣相管進行排液;19:2O,差壓變送器恢復正常指示,此時2 球罐液位為28%,磁性翻板液位計進行相應的排液操作后也恢復了正常指示。2球罐差壓變送器液位記錄曲線顯示,在17:08—18:08—18:45的時段內,液位出現(xiàn)先下降后上升再下降且反復波動的趨勢。DAP裝置與NPK裝置正常開車時,液氨用量為20~25 t/h。由于球罐的體積特性,在供氨量穩(wěn)定的情況下,球罐赤道以下液位的下降速度是加速的,2 球罐在低液位下供氨,當液位下降至一定值且供氨量大(干擾大)的情況下,球罐內的液氨從亞臨界狀態(tài)迅速達到臨界狀態(tài),此時氣液兩相的分界面已消失,即不存在液位,且氣液相的密度相同¨ ;由于液氨的特性狀態(tài)及供氨的持續(xù),液位進一步下降,使球罐內的液氨達到超臨界狀態(tài),此時氣液兩相相互作用的過程為克服內摩擦力而產(chǎn)生激烈的擾動與渦流_2 J,磁性翻板液位計也因此上下亂指示而失效。2014年8月,2 ,3 和4 球罐差壓變送器氣相管又反復出現(xiàn)積液的情況,只是不如2011年7月那么頻繁。


2 傳統(tǒng)差壓變送器測量原理及局限性

2.1 測量原理

傳統(tǒng)差壓變送器的正壓室(法蘭)接液相,負壓室經(jīng)導壓管接氣相,其安裝示意見圖1。根據(jù)流體靜力學原理_3 J,則有:

單法蘭差壓變送器安裝示意


P+=pgh+P氣 (1)

P一:P (2)

△P1=P+一P一=pgh+P氣一P氣=pgh (3)

AP=pgH (4)

h=AP1/pg (5)

式中:P+ —— 差壓變送器正壓室所受的壓力,Pa;

P一:   — — 差壓變送器負壓室所受的壓力,Pa;

— — 球罐內的液位高度,m;

AP ——液位為h時差壓變送器的差壓

值,Pa;

△P—— 液位為100% 時差壓變送器的差壓

值(量程值),Pa;

p—— 液氨的密度,kg/m ;

g— —重力加速度,m/s ;

P魯— — 球罐內的氣相壓力,Pa。

從式(5)可知,當差壓變送器測得△P 時,就可求得液位h。

2.2 液氨球罐液位測量中的局限性

       1 和2 球罐于1993年投用,3 和4 球罐于2000年投用,采用圖1所示的傳統(tǒng)單法蘭差壓變送器測量液位。在多年的運行過程中,差壓變送器氣相管積液現(xiàn)象只是偶爾出現(xiàn)且積液量不大,對液位測量不產(chǎn)生實質性的影響,日常維護量很小。2014年8月8日2 球罐出現(xiàn)的問題,特別是當罐內的液氨處于臨界及超臨界狀態(tài)下,就目前的技術而言,任何類型的測量儀表要在這樣的情況下實現(xiàn)準確測量幾乎是不可能的,因為在那樣的狀態(tài)下根本不存在液位。盡管如此,上述2個案例中氣相管頻繁積液也暴露出傳統(tǒng)差壓變送器在液氨球罐液位測量中存在局限性。

       雙法蘭差壓變送器是一種成熟可靠的技術,但一直很難在高型容器中得到應用,因為需要更長的毛細管以方便安裝,而過長的毛細管會導致壓力傳輸誤差過大,即當環(huán)境溫度變化較大時,毛細管內填充的硅油在高溫下膨脹或低溫下收縮的情況變得更加明顯,從而使測量誤差增大 。



3 導波雷達液位計及3051S ERS電子遠傳數(shù)字差壓液位系統(tǒng)

3.1 導波雷達液位計

      目前,液氨球罐液位測量除采用傳統(tǒng)單法蘭差壓變送器外,還有導波雷達液位計。以基于TDR時域反射原理 的導波雷達液位計為例。


     導波雷達液位計的工作原理:雷達發(fā)出的高頻脈沖信號被發(fā)射到探頭并沿著纜繩傳播,信號在液氨界面發(fā)生反射并沿著纜繩傳遞回來被雷達接收,轉換后得到液位信息。雷達天線到液氨界面的距離d與脈沖信號運行時間t的關系為d=ct/2,其中c為光速。在空高E已知時,液位h=E —d。

    采用導波雷達液位計時,若原液氨球罐沒有預留安裝接口,則需在球罐上開DN80 mm的孔安裝接管且必須采用厚壁管焊接結構 J,同時涉及一些壓力容器手續(xù)變更等。導波雷達液位計的纜繩需設置重錘或在球罐底部固定,密封是一個需重點考慮的問題,氨氣冷凝、氣體干擾、油污等易使導波雷達液位計測量結果出現(xiàn)偏差,在線維護困難,在線拆裝更是不可能??傊瑢Рɡ走_液位計的安裝、維護等比差壓變送器嚴格、復雜得多 。


3.2 3051S ERS電子遠傳數(shù)字差壓液位系統(tǒng)

       2011年,艾默生過程管理公司推出了3051SERS(Electronic remote sensor)電子遠傳數(shù)字差壓液位系統(tǒng),配置2臺直接安裝的3051S壓力變送器,2臺壓力變送器之間以專用電纜、數(shù)字信號方式連接,可任意設定2臺壓力變送器中的1臺作為功能計算模塊計算出高低壓側的差壓信號,通過標準的兩線制電纜以4~20 mA的HART信號進行相關信息的傳輸。ERS系統(tǒng)是基于艾默生公司先進成熟的3051S壓力變送器平臺,是差壓液位技術的進一步數(shù)字化升級,其好特的數(shù)字架構解決了在高型容器/塔、高溫等特殊工況下進行液位、差壓測量的技術難題,在工程應用中具有很多的優(yōu)點。


3.2.1 3051S ERS系統(tǒng)的技術特點

       3051S ERS系統(tǒng)以數(shù)字方式取代了傳統(tǒng)差壓變送器的氣相管和毛細管,有效克服了由環(huán)境溫度變化、安裝所引起的放大偏差;響應速度更快,精度更高,即使在大范圍變化的溫度條件下也具備快速的響應時間和更加穩(wěn)定、可重復的測量。采用3015S ERS系統(tǒng)可充分利用現(xiàn)有的差壓變送器安裝接口及信號電纜,只需重新配置2個模塊之間的連接電纜及保護管,無需伴熱保溫。因3015S ERS系統(tǒng)本質上就是差壓變送器,不需要進行特別培訓,其每個模塊都可單好進行更換及維修,過程維護簡單而有效。因取消了氣相管,故不存在氣相管積液的問題。


3.2.2 傳統(tǒng)差壓變送器的ERS系統(tǒng)改造及其運行效果

       綜合考慮液氨的物性特點及目前球罐液位測量儀表技術、安裝接口等多種因素后,認為選用305 1 S ERS系統(tǒng)對在用的傳統(tǒng)差壓變送器進行改造是非常優(yōu)的方案。


       2013年3月,對1 球罐的傳統(tǒng)差壓變送器采用ERS系統(tǒng)進行了改造。ERS系統(tǒng)投用后,在其量程計算密度條件附近的液位指示基本與磁性翻板液位計一致;在偏離計算密度條件較大時的液位指示與磁性翻板液位計存在一定偏差,這主要是量程的計算密度是一定條件下的定值所造成的,也可以認為是壓力變送器在這種應用下存在的另一個“局限性”,但從多年的運行情況來看,這點偏差不會對正常測量及操作運行產(chǎn)生大的影響。與2 ,3 和4 球罐在用的傳統(tǒng)差壓變送器相比,1 球罐改用ERS系統(tǒng)后的反應速度非常快、測量非常準確、運行效果非常好,至今未出現(xiàn)過任何問題。

4 結語

       采用ERS系統(tǒng)改造傳統(tǒng)的差壓變送器,徹底解決了液氨球罐液位測量中氣相管積液的問題,經(jīng)過實踐檢驗,充分體現(xiàn)了這一系統(tǒng)的技術優(yōu)越性。任何測量儀表都有自身的技術特點與實用范圍,要獲得良好的工程應用,對測量介質特性的詳細了解至關重要 J。此外,隨著測量及儀表技術的發(fā)展,利用微振動傳感分析技術原理的外測式液位計已在液氨球罐的液位測量中得到了應用 。